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Abstract

Predicting the economy’s short-term dynamics—a vital input to economic agents’
decision-making process—is often done using lagged indicators in the linear models.
This is mostly sufficient during normal times, but could be inadequate during the crisis
periods such as COVID-19. In this paper, we demonstrate: (a) the payments systems
data which captures a variety of economic transactions can provide information to
estimate the state of the economy in real time, and (b) the machine learning (ML) can
provide a set of econometric tools to effectively handle wide variety in the payments
data and to capture sudden and large effects of the crisis. The use of ML models,
however, leads to the loss of interpretability and the problem of overfitting, which
diminishes the effectiveness of such models. We mitigate these challenges by: (a)
using the Shapley value-based approach to interpret ML model predictions in terms
of marginal contribution of each predictor, and (b) devising a novel cross-validation
strategy tailored for the macroeconomic prediction models to alleviate the overfitting.
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1 Introduction
Knowledge of the economy’s short-term dynamics is a vital input into every economic agents’
decision-making process. However, gauging the current state of the economy—known as nowcasting—
is difficult for various reasons. For instance, many different data series are needed to describe the
state of the economy adequately, but most of the official sources of these data are released with
significant lags (Giannone et al. 2008; Banbura et al. 2010; Angelini et al. 2011). This problem is
especially difficult during times of crisis, such as the COVID-19 pandemic, primarily because of the
unprecedented economic impacts of the crisis and the unconventional policy responses to mitigate
those crises (Spange 2010; Hamilton 2011; Greenwood et al. 2020). During such times, traditional
models have difficulty because of the realizations of the target variables are far away from their
average values (Vrontos et al. 2020; Coulombe et al. 2021; Chapman and Desai 2021).

To address such challenges, econometricians have either used new data or developed new tech-
niques (Giannone et al. 2008; Choi and Varian 2012; Buono et al. 2017; Bok et al. 2018; Kapetanios
and Papailias 2018; Koop and Onorante 2019). In this paper, we combine both the new data and
machine learning (ML) approaches to create a nowcast of the Canadian economy. First, we use
comprehensive and timely settlement data from Canada’s retail and large-value electronic payments
systems. We then use ML models1 to effectively handle wide variety in the payments systems data
and to capture sudden, large, and possibly nonlinear effects of the crisis.

The use of ML models, however, leads to many challenges that could reduce the effectiveness
of these models for nowcasting. For instance, it is easy to overfit the model on the given set of
data, which could reduce the out-of-sample performance of those models. Also, more importantly,
it is hard to interpret these models, and the interpretability could be useful in many application
including macroeconomic predictions (Varian 2014; Mullainathan and Spiess 2017; Chakraborty
and Joseph 2017; Athey and Imbens 2019). To the best of our knowledge, these challenges have
not yet convincingly addressed in the context of macroeconomic nowcasting.

In this paper, we attempt to address the interpretability issue by using the SHapley Additive
exPlanations (SHAP) methodology (Lundberg and Lee 2017; Lundberg et al. 2020), based on
Shapley values from coalition game theory (Shapley 1953; Osborne and Rubinstein 1994). To
utilize this approach, we need to consider each nowcasting exercise as a “game” then the Shapley
values can be used to fairly distribute the payout (i.e., the model prediction) among the players (i.e.,
the predictors) of the game. This is a model-independent approach; therefore, it could be used with
any type of nowcasting model. The SHAP provides a way to explain nowcasting model predictions
at each nowcasting horizon in terms of the marginal contribution of each predictor towards the
final prediction. Furthermore, by averaging each prediction instance’s contribution—in terms of
Shapley values—we can compute the marginal contribution of each predictor for the entire sample.

1We use the following parametric and non-parametric ML models which are popular among time series forecast-
ers (Ahmed et al. 2010; Bok et al. 2018; Athey and Imbens 2019; Coulombe et al. 2021): elastic net, support vector
machines, random forest, gradient boosting, feedforward artificial neural network (Hastie et al. 2009).
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Next, to alleviate the ML models problem of overfitting and improve the out-of-sample per-
formance, we devise an improved cross-validation (CV) strategy tailored to the macroeconomic
nowcasting models. In the cases where the out-of-sample test set has an economic crisis period, but
the validation set2 does not, the traditional CV approaches, such as k-fold or leave-one(or p)-out
validation (Hastie et al. 2009), could be challenging because: (a) the usual k-fold splitting breaks
the order of data and lead to the use of future data points for the past predictions, (b) the dis-
tribution of test and validation sets could be different, and (c) the model tuned on predominantly
normal periods might not perform well on out-of-sample crisis period. To overcome this, similar
to Kuhn et al. 2013, we use a randomized expanding window approach with k-fold CV, but without
changing the order of the data (Figure 3). Since we have the COVID-19 period in the test set, using
random sampling helps to include a few samples from the financial crisis period in the validation
set. Consequently, making the distributions of validation and test sets similar and hence assist in
selecting the model that can perform well on both the normal and crisis periods.

We observe that the retail and large-value payments system data in the ML models—especially
a nonlinear gradient boosting regression—can lower nowcast errors significantly. We get a 35-
40% reduction in root-mean-square errors (RMSE) in nowcasting GDP, retail-trade sales (RTS),
and wholesale trade sale (WTS)3 over a linear benchmark model4. Furthermore, in the presence
of payments data, the ML models in comparison against the dynamic factor models—commonly
preferred for macroeconomic nowcasting—can reduce nowcasting RMSE by up to 20-25%. The
out-of-sample performance gain using payments data and ML models is relatively more during the
COVID-19 crisis periods than the pre-COVID normal economic growth period.

The Shapely value-based model interpretation reveals that some of the payments streams are
equally important as prominent benchmark predictors in nowcasting GDP, RTS, and WTS; More-
over, during the COVID-19 period, many payments streams contribute strongly toward model
prediction compared to the benchmark predictors and provide crucial information about the crisis
in real-time. Our analysis suggests that the contribution of payments data—in terms of the Shapley
values—is small and linear during the periods of normal growth; however, during the periods of
strong negative and positive growths, the payments data contribution is asymmetrical and nonlin-
ear. We also observe an improved model performance when the proposed randomized expanding
window approach with k-fold-CV is used for ML model parameter tuning and cross-validation.

2The part of the in-sample training set used for ML model parameters tuning and CV (see Figure 3).
3We nowcast GDP, because it is a crucial indicator for policymakers and commonly used to test the nowcasting

model performance. We nowcast RTS and WTS because we use payments data; therefore, we presume it has value in
predicting them. Also, having multiple targets allows us to test our models robustness. Note: all three target indicators
are released with about two months of delay in Canada.

4As a benchmark model, we use the following series in linear regression model: consumer price index (CPI),
and unemployment (UNE), the Canadian financial stress indicator (CFSI), and the Conference Board’s consumer
confidence index (CBCI). The unemployment incorporates the effects of public sector hiring, and the inflation is
useful since we are using nominal predictors (Galbraith and Tkacz 2018). The CFSI is a composite measure of
systemic financial market stress for Canada (Duprey 2020). The CBCC is based on a survey of Canadian households,
and it is shown to be useful to predict household spending in Canada (Kwan and Cotsomitis 2006).
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We are not the first researchers to use payments data for nowcasting. In the past—driven by the
need to overcome dependence on lagged variables—econometricians have used payments data for
macroeconomic predictions (Galbraith and Tkacz 2007; Carlsen and Storgaard 2010; Barnett et al.
2016; Duarte et al. 2017; Galbraith and Tkacz 2018; Aprigliano et al. 2019). Canadian payments
data are a particularly good candidate for nowcasting, because it record transactions processed
in various payment instruments. Thus, it captures a broad range of Canadian consumers, firms,
and government economic activities. Also, these data are gathered electronically, hence available
promptly, and they are free of measurement or sampling errors (Galbraith and Tkacz 2007). Such
datasets are shown to be more useful during economic crisis periods such as the 2008 financial crisis
and COVID-19 shock (Chetty et al. 2020; Bounie et al. 2020; Carvalho et al. 2020).

Traditionally, researchers have used data from a few selected payment instruments for nowcast-
ing. One issue with this approach is that particular instruments may rise or fall due to economic
as well as non-economic reasons.5 Using one or two payments instruments in isolation might not
help to capture the full picture of the economy (Chapman and Desai 2021).

Recently—driven by the need to exploit non-traditional and large data sets—econometricians
have started using ML models for macroeconomic nowcasting (Chakraborty and Joseph 2017;
Richardson et al. 2020; Maehashi and Shintani 2020; Chapman and Desai 2021). These arti-
cles suggest that the ML models often outperform traditional modeling approaches, such as the
ordinary least squares and dynamic factor models, in nowcasting.

The ML models we explore in this paper can help capturing sudden and large effects of the
economic crisis and impacts of unconventional policies designed to alleviate such crisis (Coulombe
et al. 2021; Chapman and Desai 2021). This is important because different crises have reflected
differently in the payments streams suggesting a tangled and possibly nonlinear relationship between
a few payments streams and macroeconomic targets6. The ML models could also be useful to
efficiently handle a wide variety in payments data and to effectively manage collinearity in them7.
Moreover, the ML models are beneficial when the emphasis is on improving prediction accuracy—
which is also a focus of this paper (Mullainathan and Spiess 2017; Athey 2017).

We proceed as follows. In section 2 we describe the payments systems data and discuss the
adjustments performed on these data for macroeconomic predictions. Section 3 provides a brief
overview of various methods employed for nowcasting along with a discussion on challenges asso-
ciated with using ML models for predictions. Followed by the results and discussion in section 4.
Finally, in section 5 we conclude our findings. Several appendices provide further details on the
payments data and the nowcasting methodology employed in this paper.

5In Canada, the shares of electronic means payments are increasing, and the use of cash is declining primarily due
to ease of accessibility driven by technological advancements. For instance, compared to 2018, the share of debit card
payments processed through the ACSS was increased by 21%, and cash declined by 27% in 2019.

6In April 2020, the Canadian government started provided social benefits to its citizens directly affected by COVID-
19. This is reflected by the large increase in the payments flow in the respective stream. Such policy was not imple-
mented during the 2008 financial crisis, where we notice a drop in payments flow in the same stream (see Figure 1).

7Some of the payments series used here are strongly correlated to each other (Chapman and Desai 2021).
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2 Payments Systems Data
The vast majority of non-cash transactions require settlement to extinguish the debt from the
buyer to the seller. In modern economies, this is accomplished via some centralized payments
system. The data coming from such systems are potentially useful because (a) they are timely,
i.e., available immediately after the end of the period, (b) they are available at high-frequency,
i.e., at the transaction or day levels, (c) they are precise, i.e., carry no sampling and measurement
error, and (d) they are comprehensive, i.e., capture a broad range of financial activities across the
country (Galbraith and Tkacz 2007, 2018; Aprigliano et al. 2019; Chapman and Desai 2021).

In Canada, the automated clearing settlement system (ACSS) and the large-value transfer
system (LVTS) are used to settle most transactions.8 Our data consist of all settled transactions in
both ACSS and LVTS payments systems. The ACSS settles the majority of retail and small-value
payment items on a net basis. In 2019, the ACSS handled an average of 33 million transactions
per business day, with an average daily total value of 29 billion dollars. The ACSS processes
twenty-two payments streams. Broadly, these streams can be categorized into two groups: (1)
Electronic streams, which include, for example, Automated Fund Transfer, Point-of-Sale payments,
and Government Direct Deposit; and (2) paper streams, which incorporate Encoded Paper, Paper
Remittances, and Government Paper Items.

In ACSS, due to their usability, the electronic means of payments have become common than
paper items. Most of these changes are primarily driven by technological advancements leading
to the inception and adoption of new payment instruments; However, an economic crisis like the
global financial crisis and the COVID-19 shock also influence the payments flow. Historically, the
Encoded Paper stream has the highest value shares in ACSS, followed by the AFT Credit. The
POS Payments stream has the largest volume shares, followed by the Encoded paper stream.9

The LVTS facilitates the transfer of large-value payments between Canadian financial institu-
tions on a gross basis. In 2019, the LVTS handled an average of 40 thousand transactions per
business day, with an average daily total value of $189 billion dollars. LVTS provides each partici-
pant with two options called tranches, T1 and T2, to exchange payments. Each tranche (henceforth
also referred to as stream) is differs based on how individual payments are collateralized. Payments
in the LVTS comprise foreign exchange payments, payments for the settlement of Canadian-dollar-
denominated securities, payments related to the final settlement of the ACSS and Government of
Canada transactions, as well as the Bank of Canada’s own and its clients’ payments.10

In LVTS, most of the payments value and volume are processed through T2. Historically, T2
has processed roughly 75% value and 98.7% volume of payments, and T1 has processed roughly
25% value and 1.3% volume.

8The ACSS supports 99% percent of the daily transaction volume and 13% of the daily value processed by the
Canadian payment systems. The LVTS settles 87% of the total value moving through the Canadian payment systems.

9Refer Chapman and Desai 2021 for the breakdown of shares of payments streams in the ACSS.
10Refer to Arjani and McVanel 2006 for further details on types of payments settled in the LVTS
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Table 1: ACSS and LVTS payments streams used in this study.a

ID Label Short Description

C AFT Creditb Direct Deposit (DD): payroll, account transfers, etc.

D AFT Debit Pre-authorized debit (PAD): bills, mortgages, utility, etc.

E Encoded Paperc Paper bills of exchange: cheques, bank drafts, paper PAD, etc.

N Shared ABM Debit card payments to withdraw cash at shared ABM network

P POS Paymentsd Point of sale (POS) payments using debit card

X Corporate Paymentse Exchange of Corporate-to-Corporate and bill payments

All Allstreamf It is the sum of all payments streams settled in the ACSS

T1 LVTS-T1g Time critical payments and payments to Bank of Canada

T2 LVTS-T2 Security settlement, foreign exchange and other obligations
a The first six payments streams are representative of twenty payments instruments processed separately in

the ACSS. There are more payments instruments; however, they are not available for the entire period we
consider in this paper; therefore, they are excluded from this study. The excluded streams are ICP Regional
Image Payment and ICP Regional Image Payments Returns. Note: Excluded streams collectively account for
only about 0.001% of the total value settled in the system. For further details on individual ACSS streams,
refer to Appendix A.

b Stream C is the sum of AFT Credit and Government Direct Deposits streams (GDD). We combine them
because starting in April 2012; the GDD was separated from AFT Credit.

c Stream E is the sum of multiple streams settled separately in ACSS. It combines Encoded Paper (E), Large-
Value Encoded Paper (L), and Image Captured Payments, (O) Canada Savings Bond (B), Receiver General
Warrants (G), and Treasury Bills and Bonds (H) streams. It subtracts Image Captured Return (S), Unqual-
ified (U), and Computer Rejects (Z) streams. We combine them because, over time, all these streams were
separated from Encoded Paper streams (E).

d Value and volume of stream P are obtained by summing Online Payments (J) and POS Payments (P) streams
and subtracting Online Returns (K) and POS Refund (Q) streams.

e Stream X is the sum of Paper Remittances (F), EDI Payments (X), and EDI Remittances (Y). It is composed
of all Corporate-to-Corporate payments and Corporate bill payments and remittances.

f Allstream is the sum of all the payments streams processed in the ACSS.
g We exclude payments from the Bank of Canada in LVTS-T1.
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2.1 Adjustments to the Payments Data

Driven by technological advancements, in the past, some of the payments instruments from ACSS
were discontinued or merged into others, and some new payments instruments were created.11 For
example, starting in 2012, a new stream was created to process the Government of Canada’s direct
deposit payments. This addition caused a sudden drop in the value and volume of payments in the
AFT Credit stream, where they were originally processed. To overcome the effects of such sudden
changes and to get a better representation of payments flow, we merged a few streams belonging
to similar categories and settled related payments.12 Also, to overcome the effects of consumers’
choice of payments, i.e., when they switch payments method,13 we include the sum of all payments
instruments in ACSS, “Allstream” as a separate series. This should help us get the overall picture
from the ACSS and mitigate the effects of a few unused streams.

After those adjustments, we are left with seven streams from ACSS14 and two streams from
LVTS that are listed in Table 1 along with a short description. For nowcasting, we use both the
monthly gross dollar amount, i.e., value and the number of transactions, i.e., volume settled in those
payments instruments; therefore, we have in total eighteen series.

Like other macroeconomic time series, payments data have a strong seasonal component. We
adjust all series (both value and volume) for seasonality using the X-13 ARIMA tool (X13 Reference
Manual 2017).15 Note that the recursive seasonal adjustments are performed in real-time using the
data available up to the nowcasting horizon at each time step. The year-over-year (YOY) growth
rates of the seasonality-adjusted payments series are used to predict the similarly adjusted YOY
growth rates of macroeconomic indicators.16

Our dataset does not include some of the payments instruments which are not settled through
the ACSS or LVTS, such as credit card and e-transfer payments.17 However, Galbraith and Tkacz
(2018) concluded that the credit card payments data in Canada does not add significant value in
nowcasting GDP and retail sales.18 Furthermore, our dataset does not include on-us transactions
where both sender and receiver have an account with the same financial institution; therefore, such
transactions do not need to be settled in payment system. However, their shares are small and
might not drastically influence our analysis.19

11See Appendix A for specifics on changes in multiple ACSS streams over time.
12See Table 1 footnotes for the specifics of each adjustment performed.
13For nowcasting, we are interested in capturing if spending (or earning) has slowed (or stopped), rather than a

switched payment method.
14The seven ACSS streams comprise transactions settled in all of the ACSS payments instruments.
15Seasonality adjustments are performed because official macro indicators are released with similar adjustments.
16Using growth rates (instead of levels) helps in inducing (approximate) stationarity in both target and predictors.
17In 2019, credit card payments accounted for about 6.2% in value and 31.1% in volume of total retail transactions

in Canada. Similarly, e-transfer payments accounted for 1.5% in value and 2.5% in volume (Paturi and Chiron 2020).
18Note that in Galbraith and Tkacz (2018) the authors used a short sample size in their analysis of credit card data.

The results could be different for a larger sample size.
19On-us payments amount to roughly 20% more than those settled in ACSS. The values of on-us transactions differ

by payments instrument; for instance, in Encoded Paper, it is about 25%, and in POS Payments, it is about 16%.
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2.2 Payments Data for Macroeconomic Nowcasting

The crux of the nowcasting problem is that most of the official estimates of macro indicators are
released with a substantial delay. For instance, in Canada, GDP is released with a delay of eight
weeks, and both retail and wholesale sales are released with six weeks of lag. Furthermore, they
undergo multiple revisions, sometimes years after, highlighting the uncertainty of the measurement.
Moreover, during a rapid crisis such as COVID-19, macroeconomic predictions are difficult because
of the large and unprecedented economic impact. This could undermine the use of lagged data for
nowcasting because it does not carry much information about the impact of a crisis. Therefore, it
is valuable to use more timely available information—in this case, the payments systems data.

The payments data capture numerous types of transactions from both sides of macroeconomic
accounts: For example, consumers’ income and expenditures, business-to-business payments, and
Canada’s government spending. Therefore, this variety, timeliness, and the lack of sampling and
measurement errors in the payments dataset make it a rich economic information source (Galbraith
and Tkacz 2007, 2018; Chapman and Desai 2021).

For nowcasting exercises, we use Canada’s monthly GDP, retail and wholesale trade sales at
the latest available vintages (i.e., after revisions) and real-time vintages (i.e., first release) as target
variables.20 We select these indicators because GDP is crucial for policymakers, and since we are
using the payments data, we think it has value in predicting RTS, WTS. All these indicators are
released with substantial lag in Canada and are available at the monthly frequency for all historical
releases; therefore allows us to test the robustness of our models.

The YOY growth rates of the latest monthly GDP are plotted with Encoded Paper and AFT
Credit values in Figure 1(top). Similarly, RTS’s YOY growth rates are plotted with POS Payments
and Shared ABM values in Figure 1(middle). The YOY growth rates of WTS are plotted with
Corporate Payments and LVTS-T2 values in Figure 1(bottom). To get a sense of the importance
of the payments data during a crisis, we highlight all variables’ growth rates during the global
financial crisis period (in gray) and the COVID-19 period (in blue).

During the global financial crisis period, the decline and rebound in these payments streams’
growth rates go hand-in-hand with macroeconomic indicators. Similarly, during the COVID-19
shock, we can see a sudden drop in most of the payments stream, like macro variables. For
instance, GDP and Encoded Paper, RTS and POS Payments, and WTS and Corporate Payments
show similar movement during both crisis periods. This is a good indication of the economic value
associated with these payments streams during such times.

During the COVID-19 period, however, we observe a tangled relationship between the macro
indicators and some of the payments streams. For instance, the value of payments through the
AFT Credit stream (which also includes the Government Direct Deposit payments) did not drop

20Latest vintages of seasonally adjusted monthly GDP, RTS, and WTS are obtained from Statistics Canada Tables
36-10-0434-01, 20-10-0008-01, 20-10-0074-01, respectively. Similarly, historical releases of GDP, RTS, and WTS
are obtained from tables 36-10-0491-01, 20-10-0054-01, 20-10-0019-01.
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significantly at the onset of COVID-19 shock; on the contrary, starting in April 2020, the value of
payments processed through the AFT Credit stream increased due to flow of Government social
payments to those directly affected by the pandemic (Figure 1-top). Similarly, we note that the
value of payments through the LVTS-T2 stream surged significantly at the onset of COVID-19,
showing an opposite behavior with macro indicators during the same period. Such behavior is not
seen during the global financial crisis period where both WTS and T2 growth rates were dropped
(Figure 1-bottom).21 Such twisted behavior could be challenging for the linear models and would
justify the use of nonlinear ML models.

Figure 1: Standardization year-over-year growth rate comparisons of GDP, retail trade sales (RTS),
and wholesale trade sales (WTS) with a few selected payments streams for the period between Mar
2005 to Dec 2020. Highlighted in gray is the global financial crisis period; blue shows the COVID-
19 period. NOTE: C is AFT Credit, E is Encoded Paper, N is Shared ABM, P is POS Payments, X
is Corporate Payments, and T2 is LVTS-T2 Payments. The value is the dollar amount.

21Similar behavior is observed in LVTS-T1, where a drastic rise in the value of payments is observed during the
COVID-19 period due to extraordinary measure taken by the Bank of Canada under its quantitative easing policy (Bank
of Canada 2020
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3 Methodology
In this section, we briefly discuss the nowcasting models employed in this paper. First, we discuss
the ordinary least squares (OLS) and the dynamic factor model (DFM). This is followed by a brief
discussion on the ML models used in the paper.

Consider a set X = {x1,x2, . . . ,xM} of M predictors (also called features or independent variables)
and a target y (dependent variable), each with N data (sample) points. This can be represented
as a dataset (X ,y) where X is of size N×M and y is a vector of size N×1. Let us denote ŷ as the
predicted target, which can be obtained using, for example, an OLS model as

ŷ(X ,w) = Xw, (1)

where w is a vector of unknown coefficients (betas or weights) of size M×1. In OLS the objective is
to minimize the residual sum of squares between the observed target variable y and the predicted
target values ŷ,

min
w ‖y− ŷ(X ,w)‖2

2 , (2)

where ‖.‖∗ is L∗ norm. Such linear models have proven to be a valuable and straightforward models
for prediction and they are commonly used due to its simplicity and interpretability. However,
when some of the predictors are correlated, the OLS estimates become highly sensitive to random
errors in the target. Moreover, the OLS can only model relationships linear in the parameters w.
Although the linearity assumption make them easy to interpret on a modular level, it generally
does not perform well on wide, large and complex data sets (Hastie et al. 2009).

The dynamic factor models are a powerful approach to captures the common dynamics of a large
set of predictors into a relatively small number of latent factors. It is a frequently preferred model
for macroeconomic nowcasting and forecasting when dealing with a large set of predictors (Giannone
et al. 2008; Stock and Watson 2016). Similar to Chernis and Sekkel 2017, we estimate the factors
using the model of Bańbura and Modugno (2014), which can effectively handle a large number of
predictors and the missing data. The basic representation of the model is:

Xt = Λ ft + εt (3)

ft = A1 ft−1 + · · ·+Ap ft−p +ut (4)

where Xt is a set of predictors at time t, ft is the unobserved factor at t, Λ is vector of factor
loadings, εt is idiosyncratic disturbance at t, Ai are matrices of autoregression coefficients, and ut

is factor disturbance at t. The model parameters can be estimated by maximum likelihood using
the Expectation-Maximization (EM) algorithm proposed in Bańbura and Modugno (2014). DFMs
are successfully applied for economic monitoring and predictions around the world (Banbura et al.
2010; Stock and Watson 2016; Hindrayanto et al. 2016; Bragoli 2017) including for nowcasting
Canada’s GDP (Chernis and Sekkel 2017; Chernis et al. 2020).
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3.1 Machine Learning Models for Nowcasting

To exploit the non-traditional and large-scale data sources, researchers have recently begun utilizing
ML models for economic nowcating (Richardson et al. 2020; Maehashi and Shintani 2020; Chapman
and Desai 2021). The ML models are shown to handle wide- and large-scale data efficiently and
can manage collinearity. Furthermore, they are demonstrated to capture nonlinear interactions
between the predictors and the target (Chakraborty and Joseph 2017; Coulombe et al. 2021).

We use some of the recently popularized parametric and non-parametric machine learning ap-
proaches such as elastic net (Zou and Hastie 2005), support vector machines (Smola and Schölkopf
2004), random forest (Breiman 2001; Liaw and Wiener 2002), gradient boosting (Friedman 2001),
and feedforward artificial neural network (Bengio et al. 2009). For each considered model, there
are many variations proposed in the literature; however, we have focused on the simpler version of
each model. In the remaining part of this section, we give a high-level description of these models;
for further details, refer to Appendix B.

The elastic net (ENT) is a regularized linear regression model. Here the objective is similar to
that of the OLS (shown in Equation 2) with the addition of L1 and L2 penalties on how large the sum
of the parameters w can get.22 In an elastic net regression, the combination of L1 and L2 penalties
allows for learning a sparse model while encouraging grouping effects, stabilizing regularization
paths, and removing limitations on the number of selected variables (Zou and Hastie 2005).

Support vector regression (SVR) is another model useful for problems with multiple predictors.
It uses a very different objective function compared to the OLS or ENT. The SVR is based on
support vector machines. These are algorithms whose task is to find a hyperplane that separates
the entire training dataset into, for example, two groups by using a small subset of training points
(called support vectors). In the case where there is no such hyperplane, it is modified to minimize
the number of misclassified points in every region (Burges 1998; Smola and Schölkopf 2004).

Another popular approach is random forest (RF) regression. It is a decision tree-based ensemble
learning method built using a forest of many regression trees. It is a non-parametric approach that
addresses the multicollinearity problem slightly differently from parametric approaches such as OLS
or ENT. RF is a bagging (bootstrap aggregation) approach, i.e., each tree is independently built
from a subset of the training dataset. Each sample could randomly select a subset of features
from the available set of feature—helping in decorrelation. The final prediction is performed by
averaging the predictions of all regression trees (Breiman 2001; Liaw and Wiener 2002).

Similar to the RF, gradient boosting (GB) regression is a tree-based non-parametric ensemble
learning approach. However, unlike RF, GB is based on boosting in which a sequence of weak
learners (decision trees) are built on a repeatedly modified version of the training dataset. The
data modification at each boosting interaction consists of applying weights to each of the training
samples, and for successive iterations, the sample weights are modified (Friedman 2001).

22A regression model that uses only the L1 penalty is a Lasso regression, and a model that uses only the L2 penalty
is a Ridge regression (Hastie et al. 2009; Zou and Hastie 2005).
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The feedforward artificial neural network (ANN) with hidden layers is multiple layers of artificial
neurons sandwiched between input and output layers. In this approach, the data always moves
forward through the network layers. The weighted sum of the first layers is typically passed through
a nonlinear activation function resulting in a nonlinear function of the inputs. Then the outputs are
sent to the next layer, and the process continues until the last layer. Once we get the final output
from the network, we measure how good that output is compared to the target’s actual value using
an objective function, for example, mean squared error. Given these results, we go back and adjust
the weights and biases of the network. Typically we need a large training dataset to achieve a good
performance using ANN (Bengio et al. 2009; Goodfellow et al. 2016).

Note that there are many advanced versions of tree-based methods, such as LightGBM (Ke et al.
2017), and deep neural networks-based method, such as long short-term memory (LSTM) (Hochre-
iter and Schmidhuber 1997) are proposed in the literature. However, to efficiently utilize them
for prediction, we often need a large training sample. Since our dataset is quite small (about 200
sample points), these models did not perform better than other models used in this paper.

3.2 Machine Learning Models Interpretability and Cross-validation

Interpretability could be essential for many classes of problems, including macroeconomic predic-
tion. However, the use of complex ML models often leads to a loss of interpretability (Mullainathan
and Spiess 2017; Chakraborty and Joseph 2017; Athey and Imbens 2019).

Some of the ML models employed in this paper, such as elastic net, support vector regres-
sion, and the tree-based ensemble learning models, can be interpreted up to a certain extent (Zou
and Hastie 2005; Burges 1998; Breiman 2001; Friedman 2001). However, each method has differ-
ent interpretability approaches, making it hard to compare against each other. To address these
challenges, we use the Shapley value-based model agnostic approach—SHAP (SHapley Additive
exPlanations)—developed in Lundberg and Lee (2017); Lundberg et al. (2020).

In SHAP, the Shapley value method from coalitional game theory23 is used to fairly distribute
the “payout” (= the prediction) among the “players” (= the predictors) (Lundberg et al. 2020).
In nowcasting, the SHAP can be used to fairly distribute the ML model prediction among the set
of predictor xt at each time horizon t for local model interpretations. Furthermore, using Shapley
values for each instance t, we can compute the global interpretation of the ML models in the form
of feature importance for the entire training (in-sample) or testing (out-of-sample) data sets.

In Lundberg and Lee (2017) the authors propose two approaches based on the type of underlying
process to compute the Shapley values: (1) KernelSHAP, a kernel-based estimation approach, which
can be used for many ML models, such as elastic net, artificial neural network, and tree-based
models; and (2) TreeSHAP, a computationally efficient approach for the Shapley value estimation
for only tree-based ML models, such as decision trees, random forests and gradient boosted.

23The Shapley value method can be used to fairly distribute payouts among players based on their contribution to
the total payout in a coalitional game (Shapley 1953; Osborne and Rubinstein 1994)
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Since the SHAP methods are based on the Shapley value, which has game-theoretical foun-
dations, these methods are trustworthy (Molnar 2020). However, the time required to estimate
the Shapley values using KernelSHAP could increase exponentially with the number of predictors.
This is not a big concern for our application because we have comparatively fever predictors and
smaller sample sizes. The KernelSHAP method also suffers from collinearity in the features. This
could be concerning for our case, given that a few predictors are correlated. These problems can
be mitigated—up to a certain extent—using TreeSHAP, but only for tree-based models. Another
challenge with these approaches is that it is possible to create intentionally misleading interpre-
tations in order to hide the bias. Also, in some cases, the outcomes are easy to misinterpret and
could lead to ambiguous conclusions. Therefore, SHAP should be used with caution (Slack et al.
2020; Molnar 2020). Further details on the SHAP and Shapley values are given in Appendix E.

Another issue commonly attributed to the use of ML models is the problem of overfitting. The
ML models have many parameters which can be optimized to improve the prediction accuracy
(commonly called hyperparameters tuning). Therefore, it is easy to tune the model to perform well
on a specific set of data, for example, an in-sample training set. However, such models generally
fail to perform well when applied to the unseen data (Hastie et al. 2009).

This problem can be alleviated using a k-fold cross-validation techniques (Hastie et al. 2009).
In the standard approach, the training sample is randomly split into k-folds, then for each iteration,
the k−1 folds are used for in-sample training, and the kth fold is used for out-of-sample testing. Such
a procedure effectively tunes the model parameters and avoids overfitting; However, the random
splitting of the training sample breaks the order of the data and could lead to the use of future
data points for the past predictions, which could give an unfair advantage to the model. For these
reasons, it is not practical to use it in the same way to nowcasting models.

Figure 2: Top: schematic of standard expanding window approach for cross-validation in time-
series. The dataset is divided into a training set with validation subsets and a test set (highlighted
in blue). Bottom: schematic of the proposed approach, here the validation subsets are sampled
from the gray highlighted area. The orange line shows the GDP growth rate.

13



This challenge can be mitigated using expanding window approach for cross-validation as de-
picted in Figure 2 (top). Here the end part of the training set, often called a validation set, is kept
aside for model tuning and cross-validation.24 This approach is useful for nowcasting during normal
economic periods. However, in the cases where the test sample has an economic crisis period, but
the validation sample does not, the traditional expanding window could be challenging because:
(a) distribution of test and validation samples are quite different, and (b) the model is tuned only
for normal periods; therefore might not perform well on out-of-sample crisis periods.

In this paper, we have devised a slightly altered version of expanding window approach tailored
to the macroeconomic nowcasting models (Figure 2-bottom). We randomly sample n-points (one
for each iteration) between two specified dates and use them as a validation sample (Figure 3). For
each iteration of expanding window validation, only the data points that come before the chosen
point are used for training—preserving the order of data and temporal dependency between the
observations. In the current exercises, since we have the COVID-19 period in the test set, using a
random sampling strategy leads us to include a few sample points from the global financial crisis
period in the validation set. The proposed approach helps make the distribution of validation and
test sets similar and assist in selecting a model that can perform well on both the normal and crisis
periods. Also, it removes the restriction on the number of validation sets we can sample (Figure 2).

Furthermore, instead of using all payments streams in each model or manually selecting a
few payments streams for the given macro indicator, we use a data-driven approach for predictor
selections. We treat the number of payments steams p similar to a model parameter and use the
expanding window cross-validation approach to optimally select the best p streams for each target
variables based on their performance on the training and validation sets.25

Figure 3: Schematic of expanding window approach for cross-validation (1-fold) and out-of-
sample prediction. The available data is divided into the training set with a validation subset and
the testing set. In each iteration the (•) represent the training data and (•) represent the test point.

24For each iteration of the expanding window, the training sample is increased by one period and then predict
the next period from the validation set. Consequently, the model parameters can be chosen based on the model
performance on the validation sets. See Appendix C for additional details.

25Further details of cross-validation and model selection are discussed in the Appendix D.
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3.3 Model Training and Cases Specifications

We train the nowcasting models using the expanding window approach as schematically outlined
in the Figure 3. First, we divide the dataset into two subsets: a training set (in-sample) for model
training and a testing set (out-of-sample) for predictions. The OLS and DFM models are directly
trained on the training set and used for predictions on the test set. We use Root Mean Square
Error (RMSE) as the key performance indicator for the out-of-sample model evaluation.

Each ML model, which requires hyperparameters tuning and cross-validation, are trained using
the following procedure (we call it randomized expanding window approach with k-folds):

1. From the training sample, we select two dates covering the wider range of training data26

and randomly choose a set of n sample points as a validation set (where the n is of the same
size as the test sample).

2. Thereafter, for each sample date in the validation set, we select all the sample points before
that date for training and use the sample date for prediction (Figure 3). This way, we
maintain temporal dependency and avoid using future data for the predictions in the past.

3. Next, for each model, we specify the grid for selected hyperparameters. Then, for each value
of specified parameters, we iterate over the validation set and compute the validation RMSE.

4. Steps 2 and 3 are repeated k times for the same set of hyperparameters but with a different
validation set randomly sampled from the training set using step 1 (k fold cross-validation).

5. Next, we select the best parameters, i.e., the parameters with the lowest average validation
RMSE (averaged over k folds) for out-of-sample test set predictions.

6. Finally, the chosen model parameters are used for predictions on the test set by utilizing the
standard expanding window approach over the training and test set (Figure 3).

As a benchmark (or base case), we employ a linear regression model using OLS. Here, we
use the first available lagged target variable along with the latest available consumer price index
(CPI), unemployment (UNE), Canadian financial stress indicator (CFSI)27 and Conference Board’s
consumer confidence index (CBCI).28 The CFSI and CBCI are available immediately after the end
of the period, and they carry comprehensive and useful information about the macro indicators.
Along with the CPI and UNE (which are available by one-to-two weeks of delay), these predictors
make a strong benchmark to assess the information gain using the payments systems data.

26We choose the start date just before the global financial crisis period and end data just before the test set, then
select n random data points between these two dates as a validation set. This helps us to include a few data points from
the crisis period in each fold of validation set, and at the same time avoid using a large cross-validation sample.

27CFSI is computed using the data from the following seven market segments: the equity market, the Government
of Canada bonds market, the foreign exchange market, the money market, the bank loans market, the corporate bonds
market, and the housing market.

28The CBCI is based on the Conference Board’s survey of Canadian households, which provide a measures con-
sumers’ levels of optimism on current economic conditions.
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In the main case of interest, along with the predictors specified in the base case, we use the
payments data listed in Table 1. Here, we first use the DFM to assess the marginal contribution
of payments data when used in a sophisticated econometric model. Next, we test the usefulness
of the various ML models discussed earlier in the section 3, and finally compare the ML models’
performance against the benchmark case and DFM.

For all these cases, using a procedure similar to Giannone et al. (2008); Galbraith and Tkacz
(2018), we perform nowcasting at three monthly time horizons, extending from the start of the
month of interest (t) until the month before the official release (t + 2). As we march in time, we
include new predictors when they become available. For example, GDP nowcasting at time horizon
t, i.e., on the first day of the month of interest, we use the latest available benchmark variables and
the monthly aggregated payments data available at t−1. The model F can be specified as29

ĜDPt = F (GDPt−3, CPIt−2, UNEt−2, CFSIt−1, CBCCt−1, Paymentst−1). (5)

Similarly, at the next nowcasting horizons t +1 and t +2, using the latest available predictors, the
models can be specified as30

ĜDPt+1 = F (GDPt−2, CPIt−1, UNEt−1, CFSIt , CBCCt , Paymentst). (6)

ĜDPt+2 = F (GDPt−1, CPIt , UNEt , CFSIt , CBCCt , Paymentst). (7)

4 Results and Discussion
The payments data used for nowcasting exercises range from Mar 2004 to Dec 2020. The in-sample
training period is Mar 2005 to Dec 2018 (N = 166 sample points)31 and the out-of-sample testing
period is Jan 2019 to Dec 2020 (N = 24). Our training set includes the 2008 global financial crisis
period, and the test set combines a normal economic growth period (Jan 2019 - Feb 2020) and
the part of the ongoing COVID-19 crisis period (Mar - Dec 2020). This allows us to examine our
models’ performance during both normal and crisis periods.

The year-over-year GDP, RTS, and WTS growth rates’ nowcasting performance for the var-
ious cases outlined in the previous section are discussed next. Table 2 compare the nowcasting
performance—in terms of out-of-sample RMSE—of the DFM and ML model (gradient boosting)
on the main case against the benchmark models at t, t +1 and t +2 time horizons.

Our results suggest that the payments systems data in conjunction with ML models can provide
notable reductions in nowcasting RMSEs for all three of the macro variables considered in this

29NOTE: GDP is released by two months lag, CPI and UNE are released with one-to-two weeks of lags, CFSI,
CBCC and payments data are ideally available on next day of the end of the period.

30Note that at t +2 nowcasting horizon (on the first day of the month in which the target month’s macro indicators
will be released), we have t + 1 months payments data; However, we do not include that because we are mainly
interested in assessing the usefulness of t month’s payment data to predict t month’s macro variables.

31We lose the first one year of data after computing YOY growth rates.
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Table 2: Out of Sample RMSE comparisons for seasonally adjusted YOY growth
rate of macro variables at time horizon t-on the first day of the month of interest (top
panel) t +1-on the first day after the month of interest (middle panel) and t +2-on
the first day, two months after the month of interest (bottom panel)a

Targetb Benchmarkc Main-DFMd Main-MLe RMSE Reduction (%)f

GDP 4.58 3.95 3.70 19

RTS 7.88 7.40 7.38 7

WTS 6.34 5.81 5.74 10

Target Benchmark Main-DFM Main-ML RMSE Reduction (%)

GDP 3.97 2.98 2.43* 39

RTS 8.47 6.36 5.44* 35

WTS 7.17 6.18 4.28* 41

Target Benchmark Main-DFM Main-ML RMSE Reduction (%)

GDP 2.84 2.63 2.18 23

RTS 7.60 6.15 5.55 25

WTS 6.24 5.76 4.72 24
a In-sample training period: Mar 2005 to Dec 2018 (p = 166) and out-of-sample testing period:

Jan 2019 to Dec 2020 (p = 24).
b GDP-Gross Domestic Product, RTS-Retail Trade Sales, WTS-Wholesale Trade Sales. Note

that we use the latest available values of these targets. We also perform similar exercises by
using target variables at first-release (real-time vintages); These results are presented in the
Appendix G.

c For benchmark, we use OLS with CPI, UNE, CFSI, CBCC, and the first available lagged target
variable (i.e., second lag at nowcasting horizon t).

d For the main-DFM case, we use payments data along with the predictors in the benchmark case.
Similar to the model employed in Chernis and Sekkel (2017), we use the DFM model with
two factors and one lag in the VAR driving the dynamics of those factors. The idiosyncratic
components are assumed to follow an AR(1) process.

e We use gradient boosting regression (GBR), because it consistently performed better over other
models. We select the model parameters using the cross-validation procedure outlined in the Ap-
pendix C and D, for example, the selected model for GDP nowcasting At t + 1: learning rate
is 0.1, max depth is 2, n estimators is 1000. See Appendix B for further details of this model.

f Percentage reduction in RMSE over the benchmark model using the ML on the main case.
*, **, *** denote statistical significance at the 10, 5, and 1% level, respectively, for the Diebold-

Marino test using the benchmark.
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paper. Specifically, we get a 35 to 40% reduction in RMSE over the benchmark case in nowcasting
GDP, RTS, and WTS at time horizon t + 1. The main case predictions at this time horizon are
statistically significant for the Diebold-Marino test using the benchmark.32

Comparatively, the information gain using the payments data is smaller at the nowcasting
horizon t, i.e., when we use the first lag of payments data; and t +2, i.e., when the first lag of the
target variables at t−1 is available along with the other benchmark indicators at t. In these cases,
we get 7 to 25% reduction in RMSE over the benchmark in nowcasting GDP, RTS, and WTS.
These results suggest that the payments data provide the most value in macroeconomic nowcasting
when the given month’s payments data is used to nowcast the same month’s macro variables.

Next, we compare ML models against the DFM (Table 3). Overall, the DFM contributes to
increasing prediction accuracy up to 25% at t+1.33 However, in nowcasting GDP, RTS, and WTS at
all three time horizons, the gradient boosting regression (GBR), elastic net (ENT), and feedforward
artificial neural network (ANN) models—in many cases—perform better than DFM and other ML
models considered in this paper. This is probably due to their ability to handle multiple predictors
efficiently and capture sudden, large, and nonlinear interaction between the predictors and target
variables during the COVID-19 crisis period. Overall, using payments data in the ML models, we
get up to a 25% reduction in RMSE over the DFM with the payments data.

Visual comparisons of the best performing ML model against the benchmark model for in-
sample and out-of-sample (highlighted in gray) predictions are depicted in Figure 4. Incorporating
the payments data in ML models provides downturn and recovery indications much better than the
benchmark model in both in-sample and out-of-sample periods. We conjecture that this is due to
the new and timely information provided by the payments data and ML models’ flexibility, allowing
this data to provide better predictions during crisis periods.

Next, we separately test our models’ out-of-sample performance during a normal time (Jan
19 to Feb 20) and the COVID-19 period (Mar 20 to Oct 20) of the test sample (see Table 4 in
Appendix F).34 We observe a higher gain using payments data during the time of crisis (up to
35% RMSE reduction) compared to the normal period of the test sample (15 to 25% reduction in
RMSE) using payments data. These results suggest that the payments data is useful during normal
periods, but its usefulness surges during crisis periods.

Lastly, we compare GDP nowcasting performance of our model with the real-time vintages (first
releases) and the latest vintages (see Table 5 in Appendix G). Comparatively, the models using
payments data perform better against the latest vintages. This makes sense, given that the latest
vintages are more accurate compared to the real-time vintages. Therefore, we conclude that the
payments data are effective in providing timely estimates of the key macro-indicators.

32We recognize that the Diebold-Mariano test has poor finite-sample properties; however, we use it to be comparable
with similar papers where it has been used, for example, in Chernis and Sekkel (2017) and Aprigliano et al. (2019).

33In this case, we have used the DFM model with two factors. Including more factors did not improve our results.
We note that the DFM model’s performance, in some cases, is similar to the OLS model

34We use gradient boosting regression for this exercises, because of its consistency.
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Table 3: Out of Sample RMSE comparisons of the DFM with
ML models for seasonally adjusted YOY growth rate of macro
variables at the horizons: t (top panel) t +1 (middle panel) and
t +2 (bottom panel), for the main case.a

Targetb DFMc ENTd SVRd RFRd GBRd ANNd

GDP 3.95 4.20 4.83 4.12 3.70g 4.26

RTS 7.40 8.18 8.07 8.55 7.38 7.69

WTS 5.81 6.59 6.81 6.71 5.47 6.08

Target DFM ENT SVR RFR GBR ANN

GDP 2.98 2.89 4.23 3.31 2.43 2.45

RTS 6.36 5.68 8.12 6.86 5.44 6.53

WTS 6.18 5.97 7.07 5.09 4.28 3.15

Target DFM ENT SVR RFR GBR ANN

GDP 2.63 2.30 4.28 3.01 2.18 2.25

RTS 6.15 5.41 8.41 7.11 5.55 6.01

WTS 5.76 5.14 6.91 5.24 4.72 4.02
a In-sample training period: Mar 2005 to Dec 2018 (p = 166) and out-of-

sample testing period: Jan 2019 to Dec 2020 (p = 24).
b GDP-Gross Domestic Product, RTS-Retail Trade Sales, WTS-

Wholesale Trade Sales. Note that we use the latest available values of
targets for these exercises.

c For the DFM, we use payments data along with the predictors in the
benchmark case. We use the DFM model with two factors and one lag
in the VAR driving the dynamics of those factors. The idiosyncratic
components are assumed to follow an AR(1) process.

d We use elastic net (ENT), support vector regression (SVR), random for-
est regression (RFR), gradient boosting regression (GBR), and artificial
neural network (ANN). For these ML models, we select the model pa-
rameters and number of payments predictors based on target variables
using the cross-validation procedure outlined in the section 3. Further
details on these models are provided in Appendix B. Model selection
and cross-validation procedures are detailed in Appendix C and D.

g The lowest out-of-sample prediction RMSE among the competing model
is highlighted (in bold) for each case.
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Figure 4: In-sample and out-of-sample predictions comparison of the ML-main case model (with
lowest RMSE) with the benchmark model (the OLS with base case) for t + 1 time horizon. The
in-sample training period is Mar 2005 to Dec 2018 and the out-of-sample testing period is Jan
2019 to Dec 2020 (highlighted in gray).
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4.1 Nowcasting models interpretation using SHAP

In the next part, we discuss the Shapley value-based interpretation of ML model predictions using
the SHAP library Lundberg and Lee (2017); Lundberg et al. (2020). Here, we focus on nowcasting
GDP at time horizon t +1 using the tuned gradient boosting model.35 A similar procedure can be
applied to the other target variables and ML models employed in this paper.36

For demonstration, we use the entire sample (Mar 2005 to Dec 2020) for training. In Figure 5,
we plot SHAP global feature importance obtained by averaging the absolute Shapley values for each
predictor across the training set (in-sample). This plot shows, on average, how much each feature
influences the model prediction. These features are ranked according to their average influence
(from high to low). For example, in the case of in-sample training data, GDP lag influences the
most; However, the Encoded Paper (E) value stream also has a strong influence (on average changes
the GDP growth rate by about 0.5 points). This is followed by the unemployment lag feature (UNE)
and the sum of all ACSS streams (Allstreams value).

In Figure 6, we show the global feature importance plot for the COVID-19 period with high
negative growth rates (Mar to Dec 2020). During this period, the Encoded Paper and POS Pay-
ments streams are more valuable predictors for GDP nowcasting. The GDP lag, a highly important
feature for the entire training sample, loses its prediction power during the COVID-19 crisis period.
A similar contribution of some of the payments streams is observed during the 2008 global financial
crisis periods. These results suggest that the lagged macro indicators influence the GDP growth
rates during the normal periods and contribute well to the prediction; however, they do not add
much value during crisis periods such as the global financial crisis and COVID-19 shock. During
such periods, the payments data becomes more valuable.

Next, using the SHAP “force” plots, we can compute local feature importance, i.e., how useful
each feature during a given sample point in the training set. Such insights could be important for
nowcasting exercises because, during each step of the expanding window approach (i.e., when we
march in time by one month), the force plots could provide additional insights into each month’s
predictions by highlighting marginal contributions of individual predictors.

For instance, in Figure 7, we plot the Shapley values as forces for prediction on Feb 2020 and
Mar 2020, respectively. Here, each Shapley value is an arrow that forces to increase (higher in red)
or decrease (lower in blue) the prediction from the baseline (i.e., the average of all predictions).
The size of these arrows indicates the magnitude of the Shapley value for that feature. These
forces balance at the model prediction of that instance shown as f (x). In Feb 2020, just before
the pandemic started affecting Canada’s economy, most of the payments predictors are positive
(red) and pushing the GDP growth higher; However, during Mar 2020, i.e., in the first month of
COVID-19 shock, most of the payments streams have a strong negative signal (blue) and pushing
the GDP growth lower (closer to the actual target).

35We chose this model because it consistently gives better performance over other models.
36We discuss a few key interpretation results for nowcasting RTS and WTS at the end of this section.
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Figure 5: GDP: SHAP global feature importance measured as the mean absolute Shapley values of
each instance in the entire training sample (Mar 2005 to Dec 2020). The features are ranked from
high (top) to low (bottom) based on average Shapley values.

Figure 6: GDP: SHAP global feature importance measured as the mean absolute Shapley values
of each instance in the training sample for the COVID-19 period (Mar 2020 to Dec 2020). The
features are ranked from high (top) to low (bottom) based on average Shapley values.
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Figure 7: GDP: SHAP force plots for Feb 2020 (top) and March 2020 (bottom) where red arrows
are positive Shapley values and blue are negative Shapley values. f (x) is the model prediction, and
the base value is the average of all predictions.

Figure 8: GDP: Clustered force plots for each instance in the training sample, i.e., monthly instance
from Mar 2005 to Dec 2020 positioned on the x-axis. Red clusters are positive Shapley values that
increase the prediction, and blue clusters are negative Shapley values that decrease the prediction.

Figure 9: Dependence plots show Shapley value for each instance in the sample and corresponding
feature value. On the left, we show a dependence plot for the Encoded Paper (E) value, and on the
right, we show the dependence plot for the ACSS Allstream (All) value.
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Figure 8 shows the force plots for each instance in the entire training sample, but they are
rotated and stacked together vertically. We can observe red clusters of predictors with positive
signals during positive economic growth periods and blue clusters with negative signals during the
crisis periods such as the 2008 global financial crisis and COVID-19 shock. Such clustered signals
could be valuable to track crises in real-time.

In Figure 9, we show the dependence plots for Encoded Paper value (left) and Allstream value
(right). These plots capture the relationship between the feature values on the x-axis and the
corresponding Shapley values on the y-axis. We can observe that the small and negative values of
Encoded Paper growth rates provide higher contributions in Shapley values compare to the positive
growth rates. However, both positive and negative growth rates of Allstreams value are contributing
similarly (or symmetrically). The Encoded Paper plot (left) suggests that the contribution of
payments data—in terms of the Shapley values—is small and linear during the periods of normal
growth; however, during the periods of strong negative and positive growths, the contribution of
this stream is asymmetrical and nonlinear.

Similar behavior is observed in nowcasting models for RTS and WTS using payments data and
gradient boosting. In Figure 10 and 11, we plot SHAP global feature importance for the training
set at t +1 time horizon for RTS and WTS, respectively. These plots suggest, in the case of RTS,
the POS Payments (P) value highly influences the model prediction. This makes sense, given the
POS Payments are commonly used for retail sales. In the case of WTS, the Allstreams (All) value
stream highly impacts the model prediction along with the corporate-to-corporate bill payment (X)
stream, highlighting the importance of those streams in predicting wholesale sales.

Finally, in Figure 12, we show the dependence plots of RTS with POS Payments value (left) and
WTS with Allstream value (right). Here we also show how these payments streams get influenced
by the Canadian financial stress index (CFSI). These plots suggest that, at high-stress levels, i.e.,
at high values of CFSI (showed in red) and negative payments growth rates, the signal from these
payments streams are strong and their contribution—in terms of Shapley values—is high; However,
for low levels of stress (showed in blue) and positive payments growth rates, the payments data
contributions are positive but small. This confirms the asymmetrical and potentially nonlinear
relationship between these payments streams and the corresponding macro variables.

5 Conclusions
We use comprehensive and timely payments systems data and machine learning models for macroe-
conomic nowcasting. The payments data provide economic information in real-time and help re-
duce dependence on lagged variables. Machine learning provides a set of tools to effectively process
various payments streams and capture the sudden and large effects of a crisis. To improve the
effectiveness of ML models, we use Shapley value-based approach for model interpretability, and
device specialized cross-validation strategy to avoid model overfitting.
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Figure 10: Retail Trade Sales (RTS): SHAP global feature importance measured as the mean
absolute Shapley values of each instance in the entire training sample (Mar 2005 to Dec 2020).

Figure 11: Wholesale Trade Sales (WTS): SHAP global feature importance measured as the mean
absolute Shapley values of each instance in the entire training sample (Mar 2005 to Dec 2020).
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Figure 12: Dependence plots show Shapley value for each instance in the sample and correspond-
ing predictor value. On the left, we show a dependence plot of RTS for the POS Payments value
(P), and on the right, we show the dependence plot of WTS for the ACSS Allstream value (All).
NOTE: CFSI is a Canadian financial stress index.

Our results suggest that the payments system data and ML models can lower nowcast errors
significantly over a linear benchmark models. ML models out-of-sample performance is relatively
higher during the COVID-19 crisis period compared to the pre-COVID period. We observe that ML
models’ performance changes slightly for different nowcasting cases; however, the gradient boosting
model gives a consistently good performance. The importance of payments data (especially Encoded
paper streams) increases during crisis periods. Nonetheless, some of the payments streams influence
the model predictions during the normal periods. Overall, using payments data in nonlinear ML
models, we get up to a 50% reduction in RMSE over the linear benchmark.

We also demonstrated the Shapley value-based SHAP approach’s usefulness to get insights into
the ML model predictions at each nowcasting step and for the entire training sample. This could
be a valuable tool in macroeconomic nowcasting, especially during crisis periods. Also, we find
that the proposed cross-validation technique can help reduce overfitting and improve prediction
accuracy in macroeconomic nowcasting models. To conclude, this paper substantiates the use of
payments data and ML models for macroeconomic prediction and provides a set of econometric
tools to overcome the associated challenges.
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A Overview of ACSS and LVTS Payments Instruments
The historical list of payment streams processed through the ACSS payment system. Note: the
first letter indicates the stream-ID, then the stream label followed by a short description.

• A: ABM Adjustments - POS payment items used to correct errors from shared ABM network
transactions (Stream N)

• B: Canada Savings Bond - Part of Government items. It includes bonds (Series 32 and up
and Premium Bonds) issued by the Government of Canada. It started in April 2012.

• C: AFT Credit - Direct deposit such as payroll, account transfers, government social pay-
ments, business to consumer non-payroll payments, etc.

• D: AFT Debit - Pre-authorized debit (PAD) payments such as bills, mortgages, utility pay-
ments, membership dues, charitable donations, RRSP investments, etc.

• E: Encoded Paper - Paper bills of exchange which includes cheques, inter-member debits,
money orders, bank drafts, settlement vouchers, paper PAD, money orders etc.

• F: Paper-Based Remittances - These are used for paper bill payments, that is MICR-encoded
with a CCIN, for credit to a business. This stream is similar to electronic bill payments
(Stream Y).

• G: Receiver General Warrants - Part of Government Items. Paper payment items payable
by the Receiver General for Canada. It started in April 2012.

• H: Treasury Bills and Old-style Bonds - Part of Government paper items. Certain Govern-
ment of Canada paper payment items such as Treasury bills, old-style Canada Savings Bonds,
coupons, etc. It started in April 2012.

• I: ICP Regional Image Captured Payment - Items entered into the ACSS/USBE on a regional
basis. It started in Oct 2015.

• J: Online Payments - Electronic payments initiated using a debit card through an open
network, most commonly the internet, to purchase goods and services. It started in June
2005.

• K: Online Payment Refunds - Credit payments used to credit a Cardholder’s Account in the
case of refunds or returns of an Online Payment (Stream J). It started in June 2005.

• L: Large-value Paper - This is similar to Stream E with value cap; starting in Jan 2014, this
stream merged into E

• M: Government Direct Deposit - Recurring social payments such as payroll, pension, child
tax benefits, social security, and tax refunds. It started in April 2012.
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• N: Shared ABM Network - POS debit payments used to withdraw cash from a card-activated
device.

• O: ICP National - Image Captured Payments are electronically imaged paper items that can
be used to replace the physical paper item: cheques, bank drafts, etc.

• P: POS Payments - Point-of-service payment items resulting from the point-of-sale purchase
of goods or services using a debit card

• Q: POS Return - Credit payments used to credit a cardholder’s account in the case of refunds
or returns of a POS payment (Stream P)

• S: ICP Returns National - National image captured payment returned items entered into the
ACSS/USBE on a national basis. It started in Oct 2015.

• U: Unqualified Paper Payment - Paper items that are all other bills of exchange that do not
meet Canada Payments Association requirements for Encoded Paper classification

• X: EDI Payment - Electronic data interchanges are an exchange of corporate-to-corporate
payments such as purchase orders, invoices, and shipping notices

• Y: EDI Remittances - Electronic data interchange remittances are used for Electronic Bill
Payments such as online bill payments and telephone bill payments

• Z: Computer Rejects - Encoded paper items whose identification and tracking information
could not be verified through automated processes

The LVTS settles payments through two tranche T1 and T2. There are different types of pay-
ments which include both interbank and third-party funds transfers. It also includes transactions
to and from the Bank of Canada ( Refer to Arjani and McVanel 2006 for more details.)

• Foreign exchange payments and also payments related to the settlement of the Canadian-
dollar leg of FX transactions undertaken in the Continuous Linked Settlement (CLS) system;

• Payments related Canadian-dollar-denominated securities the CDSX

• Payments related to the final settlement of the ACSS

• Large- value Government of Canada transactions (federal receipts and disbursements) and
transactions relating to the settlement of the daily Receiver

• The Bank of Canada’s own large-value payments and those of its other clients which includes
Government of Canada, other central banks and certain international organizations.
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B Machine Learning Models
In this section, we briefly discuss the machine learning models employed for nowcasting. For each
considered model, there are many variations proposed in the literature; however, we have focused
on the basic version of each model. Note that all models are implemented using the Scikit-learn
machine learning library (Pedregosa et al. 2011). See Appendix C for more details on the model
training, tuning, and cross-validation procedures.

B.1 Elastic Net Regularization

Elastic net is a regularized linear regression model. In ENT, the objective is similar to that of the
OLS with the addition of L1 and L2 penalties. A regression model that uses only the L1 penalty is
called a Lasso regression, and a model that uses only the L2 penalty is called a Ridge regression. In
ENT, the combination of L1 and L2 penalties allows for learning a sparse model like Lasso, where
only a few of the weights are non-zero. It also maintains the advantages of the Ridge regression,
such as encouraging grouping effects, stabilizing regularization paths, and removing limitations of
the number of selected variables (Zou and Hastie 2005; Hastie et al. 2009).

Consider a set X = {x1,x2, . . . ,xM} of M attributes (independent variables) and a target y (de-
pendent variable) and denote ŷ as the predicted target. With these specifications, in ENT, the
objective function to minimize is

min
w ‖y− ŷ(X ,w)‖2

2 +λ1 ‖w‖1 +λ2 ‖w‖2
2 , (8)

where w is a vector of unknown coefficients, and ‖.‖∗ is L∗ norm. This procedure can be viewed as
a penalized least squares method with penalty factor λ1 ‖w‖1 +λ2 ‖w‖2

2. The ENT is particularly
useful with multiple correlated features. Note that we explore and tune the following parameters:
λ1 and λ2 by controlling constant α that multiplies the penalty terms, mixing parameter l1 ratio

and the maximum number of iterations. For other parameters, we use the default values (see
Scikit-learn library documentation for details (Pedregosa et al. 2011)).

B.2 Support Vector Regression

Support vector regression is another model useful for the problems with multiple predictors. It uses
a different objective function compared to the OLS or ENT. The SVR is based on support vector
machines where the task is to find a hyperplane that separates the entire training dataset into, for
example, two groups by using a small subset of training points (called support vectors). In SVR
the goal is to find a function, for instance, a linear function f (xi) = wT xi +b (where b is a bias and
i = 1,2, . . .N), that has at most ε deviation from the actual y for all the training data. Therefore
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the objective function to minimize is

1
2
‖w‖2

2 +C
N

∑
i=1
|yi− f (xi)|ε , (9)

subject to

yi− f (xi)≤ ε (10)

f (xi)−yi ≤ ε, (11)

where N is the number of training samples and C is a regularization parameter constant (Smola
and Schölkopf 2004). A different type of kernel function (linear, polynomial, sigmoid, etc.) can
be specified for the decision function; therefore, it is versatile. For further details of SVM theory
and formulation, refer to Smola and Schölkopf 2004; Hastie et al. 2009. Note that we explore
and tune the following hyperparameters: kernel type, polynomial degree of the polynomial kernel
function, and regularization parameter constant C and ε. We use the default values for other
parameters (refer to Pedregosa et al. 2011 for details).

B.3 Random Forest

Figure 13: Random forest with K trees using n samples and m features for each tree.

Another popular approach is the random forest regression. It is a decision tree-based ensemble
learning method built using a forest of many regression trees. It is a non-parametric method and
hence approaches the multicollinearity problem slightly differently from parametric approaches such
as OLS or ENT. In RF, each tree is independently built from a bootstrapped subset of the training
dataset. Each bootstrap sample could randomly select a subset of features from the available set or
the full features set. The final prediction is performed by averaging the predictions of all regression
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trees. The procedure is visually depicted in Fig. 13. The two levels of randomness (i.e., a random
subset of the sample and the features) incorporated to build decision trees can help to reduce
variance in the predictions. RF has been shown to handle highly non-linear interactions between
multiple predictors and a target variable (Breiman 2001; Liaw and Wiener 2002).

Note, we explore and tune the following hyperparameters: the number of trees in the forest
n estimators, the maximum depth of the tree max depth, and the minimum number of samples
required to split an internal node min samples split. We use the default values for other parame-
ters (refer to Pedregosa et al. 2011 for details).

B.4 Gradient Boosting

Similar to the random forest, gradient boosting (GB) regression is a tree-based non-parametric
ensemble learning approach. It is a general technique of boosting in which a sequence of weak
learners (for example, small decision trees) are built on a repeatedly modified version of the training
dataset. The data modification at each boosting interaction consists of applying weights to each of
the training samples, and for successive iterations, the sample weights are modified. Basically, the
next learner is fit on the residual of the previous learner (Friedman 2001; Friedman et al. 2001).

Gradient Boosting Regression Trees are additive models whose prediction ŷ for a given input X

for each instance i can be written as

ŷi = Hp(Xi) =
p

∑
1

hp(Xi), (12)

where hp are weak learners, for example, decision trees (Friedman et al. 2001) and p is number of
learners. The model HP(X) is built as

Hp(X) = Hp−1(X)+ γhp(X), (13)

where the γ is learning rate used to regularize the contribution of each new weak learner and the
newly added weak learner hp (tree) is used in order to minimize a sum of losses Lp:

hp =
arg min

p Lp. (14)

Note: we explore and tune the following hyperparameters: The number of trees in the forest
n estimators, the maximum depth of the tree max depth, and the learning rate—which helps shrink
the contribution of each tree. We use default values for all other parameters (Pedregosa et al.
2011). Both random forest and gradient boosting techniques are interpretable up to a certain
extent. These models use decision trees as their base learners. These decision trees perform feature
selection from the provided set by selecting appropriate split points. This information can be used
to measure the importance of each feature (see Pedregosa et al. 2011 for additional details).
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B.5 Feed-Forward Artificial Neural Network

Figure 14: Schematic of densely connected feed forward neural network with two hidden layers.

A feed-forward artificial neural network with hidden layers is multiple layers of artificial neurons
sandwiched between input and output layers as depicted in Figure 14. In a feed-forward ANN, the
data always moves forward through the network layers. It starts in the input layer; for instance,
each of the input feature instance xi is multiplied by their corresponding layer’s weight w. Then, the
weighted sum of these inputs wT xi +b (where b is a bias) is passed through a non-linear activation
function σ resulting in a non-linear function of the inputs σ(wT xi +b). Then the outputs are sent
to the next layer. This process continues until the last layer. Once we get the final output from the
network, let us denote it as ŷ, we measure how good that output is compared to the actual value of
the target y. This is done by using an objective function, for example, mean squared error. Given
these results, we go back and iterative adjust the weights and biases of the network to optimize the
objective function. For further details on the activation function and optimization procedure, refer
to Bengio et al. (2009); Goodfellow et al. (2016).

The higher the number of layers, the deeper the network is; therefore, it is generally referred to as
the deep neural network (DNN). The multilayer architectures enable a combination of features from
lower layers, potentially modeling complex data with fewer units. Therefore, the DNN can be used
to model complex non-linear relationships between the input and output. However, DNN requires
tuning of a large number of hyperparameters as the number of hidden layers grows; therefore,
generally, it needs a large training dataset to achieve a good performance.

Note: we use Scikit-learn’s multi-layer perception (MLPRegressor), and we explore and tune
the following hyperparameters: The number of neurons in the hidden layers hidden layer sizes, the
activation function for the hidden layer activation, the learning rate schedule for weight updates,
and the default values for other parameters (Pedregosa et al. 2011).
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C Model Parameter Selection and Cross-Validation
The hyperparameter tuning and cross-validation of each ML model employed in this paper are
performed using the randomized expanding window approach with k-folds as follows:

1. Split the original dataset into a training set and test set (Figure 15). In our case, the training
set is Mar 2005 - Dec 2018, and the test set is Jan 2019 to Dec 2020.

2. Select two dates in the training set to randomly sample validation set. To include the global
financial crisis period, we choose validation sample between Oct 2008 to Dec 2018 and sample
24 points (same size as test set) between these two dates as the validation set.

3. Specify the hyperparameters to tune and select the range for each parameter. See Appendix B
for individual model parameters selected for tuning.

4. Using the selected parameters grid, for each fold of validation sample, do the following:
(a) For each iteration in the expanding window, select a data point from the randomly
sampled validation set and use the sample up to that point for training (Figure 3).
(b) Fit the model on the selected training sample.
(c) Using the trained model, predict for the selected sample point in the validation set.
(d) Repeat steps a, b and c for each point in the validation set.

5. After finishing iterating over chosen validation set, compute the validation RMSE.

6. Repeat steps 4 and 5 for k-times (in our case k = 5) each with different validation set randomly
sampled from the training set using step 2.

7. Compute the average validation RMSE over the k-folds.

8. Select the parameters for which the average validation RMSE is smallest.

9. Use the tuned model to get the RMSE for the testing set by re-utilizing the standard ex-
panding window approach as illustrated in Figure 3.

Figure 15: Schematic of data splits for cross-validation. The dataset is divided into a training set
with a validation sub set (sampled from highlighted gray area), and a test set (highlighted in blue).
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D Feature Selection
To select k best predictors from the set of available attributes, we employ the SelectKBest method
from Scikit-learn (Pedregosa et al. 2011). This method removes all but the k highest-scoring features
using univariate linear regression tests. It is a linear model for testing the individual effect of each
of many regressors. To select K-best variables, it employs the following steps: First, the correlation
between each predictor and the target is computed. Next, the computed correlations are converted
to F-scores (using the F-test), then to p-values. Finally, these F-scores with p-values are used to
select k highest-scoring features.

In Figure 16, we plot the scores of a few of the selected value streams (top) and volume streams
(bottom) for GDP over the expanding window for the period ranging from Oct 2008 to Dec 2020.
The prediction scores for most of the value and volume streams are high during the global financial
crisis (GFC). The scores are steady and low during normal times (2011 to 2019) except for Encoded
value (E), Allstream value (All), and LVTS-T2 volume (T2), for which scores remain high. During
the COVID19-crisis (Mar to Dec 2020), however, we see opposite behaviour in the prediction scores
of few streams. For example, AFT Credit (C) and LVTS-T2 value streams have strong prediction
scores during the GFC. However, their scores are weak during the COVID-19 period. Similarly,
the ABM stream (both value and volume) has low scores during the GFC, but, the scores are high
during the COVID-19 period.

Figure 16: The F-score of a few selected payments streams (values-top, volumes-bottom) for
GDP nowcasting. Higher scores mean a high prediction value. These plots are obtained after
each training session of the expanding window approach, ranging from Oct 2008 to Dec 2020.
Highlighted in gray is the GFC period; blue shows the COVID-19 period.
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E The Shapley Values and SHAP for Model Interpretation
The Shapley values is a method from coalitional game theory which provides a way to fairly dis-
tribute the payout among the players by computing the average marginal contribution of each
player across all possible coalitions (Shapley 1953; Osborne and Rubinstein 1994).

For a coalitional games (N,v), where, N is a finite set of players indexed by i, and v is utility
function or payoff function, the Shapley value can be obtained by this theorem which satisfy the
symmetry, dummy and additivity axioms (Osborne and Rubinstein 1994):

φi(N,v) =
1

N! ∑
S⊆N\{i}︸ ︷︷ ︸

average over all S

|S|!
(
|N|− |S|−1

)
!︸ ︷︷ ︸

possible coalitions

[
v(S∪{i})− v(S)

]
︸ ︷︷ ︸

marginal value

At a high level, the above equation can be split into three parts. The last part of the equation
(the marginal value) gives the marginal contribution of an individual player i when added to a
coalition S that does not have i. The middle part provides the way to compute different possible
ways in which we could have formed the coalitions. Then, we take an average over possible ways
that we could have done the marginal value calculation.

The SHAP (SHapley Additive exPlanations) proposed by Lundberg et al. 2020 uses the Shapley
values to explain the model predictions in terms of marginal contribution of each predictor. The
SHAP specifies the explanation of model F as a linear model of coalitions:

F (S) = φ0 +
M

∑
i=1

φiSi (15)

where S ∈ {0,1}M is coalition vector with maximum M coalitions and φi the Shapley value for ith

player. In S the entry 1 means corresponding player is present and 0 means player is absent.
For illustration, consider nowcasting is a “game” then the Shapley values can be used to fairly

distribute the payout (= the prediction) among the players (= the predictors). Note: for the com-
putation of the Shapley values in the SHAP, the zero means the corresponding predictor is absent;
in that case, the absent predictors’ value is replaced by a random value from its sample (Lundberg
et al. 2020; Molnar 2020). The procedure is further illustrated as follows:

1. Consider a nowcasting problem with three predictors (Figure 17) in a prediction model (it
could be any model) to predict a target (for instance, monthly GDP growth).

2. The average prediction of the model, i.e., the base value is 0.2, and for the current instance
(for example, a month t), our model predicts GDP growth 0.5.

3. By computing the Shapley values for all possible coalitions among these predictors, we can
explain the difference between actual prediction (0.5) and the base value (0.2) in terms of
each predictor’s contribution.
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4. In the current example: predictor-1 increases the growth rate by 0.5 percentage points,
and predictor-2 is pushing it down by 0.3 points, and predictor-3 contributes +0.1 points.
Thus, together these three predictors increase the prediction by +0.3 points from the average
predictions of the entire sample.

Figure 17: The SHAP explainer provides marginal contribution of each predictor

The SHAP values tell us which predictor contributes the most in the current instance of the
prediction, i.e., a local interpretation. Similarly, by using the Shapley values for each instance in the
sample, we could get the average contribution of each predictor over that sample. That could give
us a global interpretation of the model in terms of feature importance. However, it is important to
remember that these are only for the chosen model, and they do not explain the causality.

The SHAP package developed by Lundberg and Lee 2017; Lundberg et al. 2020 provides var-
ious tools to visualize the Shapley values computed for various ML models commonly used for
predictions. For instance, force plots or clustered force plots (Figure 7 and 8) are useful for local
interpretation, i.e., at each instance of prediction. The feature importance plots (Figure 5 and
6) and summary plots are useful for global model interpretations. Also, the dependence plots
(Figure 9) could be valuable for understanding the relationships between given predictors and the
targets in terms of the Shapley values.

The SHAP, although a powerful tool developed based on theoretical foundations for ML model
interpretability, there are few pitfalls, and it should be used with caution (Molnar 2020; Slack
et al. 2020). For example, the KernelSHAP is computationally intensive and could be very slow
for problems with a large number of predictors. Also, it is sensitive to colinearity in the predictors.
The TreeSHAP has overcome some of these challenges to a certain extent; however, it brings other
challenges (Molnar 2020). Furthermore, as shown by Slack et al. 2020, it is possible to miss use
such ad-hoc tools to hide model biases. However, the authors conclude that the SHAP is less prone
to such problems than a few other interpretation tools.
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F Nowcasting Performance for Normal and Covid-19 Periods
In this section, we separately test our models’ out-of-sample performance during a normal time
(Jan 19 to Feb 20) and the COVID-19 period (Mar 20 to Oct 20) of the test sample highlighted in
gray and blue, respectively in Figure 18. For demonstration, we use gradient boosting regression
for these exercises. We observe a higher gain using payments data during the time of crisis (up to
35% RMSE reduction) compared to the normal period of the test sample (15 to 25% reduction in
RMSE) using payments data (Table 4). These results demonstrate the usefulness of payments data
during normal periods and crisis periods.

Figure 18: The test sample of GDP nowcasting exercises is divided into two sets: the pre-Covid-19
test set (highlighted in gray) and the Covid-19 test set (highlighted in blue).

Table 4: Out of sample RMSE comparisons for seasonally
adjusted YOY growth rates of GDP, RTS and WTS at now-
casting horizon t +1 using the gradient boosting modela

Targets Pre-COVID-19 test setb COVID-19 test setc

GDP 16 34

RTS 14 35

WTS 27 37
a At t + 1 time horizon, we use current, i.e., t month’s payments data,

to predict the same month’s macro variables on the first day of the
subsequent month.

b For the pre-Covid-19 test set (or normal period): In-sample training
period: Mar 2005 to Dec 2018 and out-of-sample testing period: Jan
2019 to Feb 2020. Those numbers show the percentage gain over
benchmark cases for the same period. We use OLS with CPI, UNE,
CFSI, CBCC, and the first available lagged target variable for the
benchmark.

c For Covid-19 test set (or crisis period): In-sample training period:
Mar 2005 to Feb 2020 and out-of-sample testing period: Mar 2020 to
Dec 2020. Those numbers show the percentage gain over benchmark
cases for the same period.
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G Nowcasting Performance for First and Latest Vintages
In this section, we compare the GDP nowcasting performance of our model with the real-time
vintages (first releases) and the latest vintages (both shown in Figure 19). Comparatively, the
models using payments data perform better against the latest vintages (we get smaller RMSEs).
However, the gains are small (Table 5). This makes sense, given that the latest vintages are more
accurate compared to the real-time vintages. Note: the performance gain is higher (about 10%) at
t +1 nowcasting horizon compared to other time horizons.

Figure 19: YOY seasonally adjusted GDP growth rates comparison for the first releases with latest
releases. Highlighted in gray is the 2008 financial crisis period, and blue is the Covid-19 period.

Table 5: Out of sample RMSE comparisons for seasonally adjusted
YOY growth rate of GDP at nowcasting horizon t, t + 1, and t + 2
using gradient boosting modela

Nowcasting Horizonb Latest Vintagesc Real-time vintagesd

t 3.73 3.88

t +1 2.61 2.92

t +2 2.66 2.68
a In-sample training period: Mar 2005 to Dec 2018 and out-of-sample testing

period: Jan 2019 to Dec 2020.
b Nowcasting horizons: t is on the first day of the month of interest (top panel),

t +1 is on the first day after the month of interest (middle panel), and t +2 is
on the first day, two months after the month of interest (bottom panel)

c We use the latest available monthly levels of seasonally adjusted GDP from
Statistics Canada Tables 36-10-0434-01

d We use the historical real-time vintages (available as of Mar 2020) of season-
ally adjusted monthly GDP from Statistics Canada Tables 36-10-0491-01.
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